Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae.

نویسندگان

  • C Loudon
  • M A Koehl
چکیده

Many organisms increase the air or water flow adjacent to olfactory surfaces when exposed to appropriate chemical stimuli; such 'sniffing' samples fluid from a specific region and can increase the rate of interception of odorant molecules. We used hot-wire anemometry, high-speed videography and flow visualization to study air flow near the feathery olfactory antennae of male silkworm moths (Bombyx mori L.). When exposed to conspecific female sex pheromone, male B. mori flap their wings through a stroke angle of 90-110 degrees at approximately 40 Hz without flying. This behavior generates an unsteady flow of air (mean speed 0.3-0.4 m s(-1)) towards the antennae from the front of the male. A pulse of peak air speed occurs at each wing upstroke. The Womersley number (characterizing the damping of pulsatile flow through the gaps between the sensory hairs on the antennae) is less than 1; hence, pulses of faster air (at 40 Hz) should move between sensory hairs. Calculation of flow through arrays of cylinders suggest that this wing fanning can increase the rate of interception of pheromone by the sensory hairs on the antennae by at least an order of magnitude beyond that in still air. Although wing fanning produces air flow relative to the antennae that is approximately 15 times faster than that generated by walking at top speed (0.023 m s(-1)), air flow through the gaps between the sensory hairs is approximately 560 times faster because a dramatic increase in the leakiness of the feathery antennae to air flow occurs at the air velocities produced by fanning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fluid mechanics of arthropod sniffing in turbulent odor plumes.

Many arthropods capture odorant molecules from the environment using antennae or antennules bearing arrays of chemosensory hairs. The penetration of odorant-carrying water or air into the spaces between these chemosensory hairs depends on the speed at which they are moved through the surrounding fluid. Therefore, antennule flicking by crustaceans and wing fanning by insects can have a profound ...

متن کامل

Enzymatic Conversion and Degradation of Sex Pheromones in Antennae of the Male Silkworm Moth Antheraea polyphemus

Gerhard Kasang, Leopold von Proff, and Michael Nicholls Max-Planck-Institut für Verhaltensphysiologie, D-8131 Seewiesen, Bundesrepublik Deutschland Z. Naturforsch. 43c, 275-284 (1988); received December 14, 1987/January 25, 1988 Dedicated to Professor Adolf Butenandt on the occasion of his 85th birthday Moth, Antennae, Pheromones, Metabolites, Enzymes In living antennae of the male silkworm mot...

متن کامل

Moth pheromone receptors: gene sequences, function, and evolution

The detection of female-released species-specific sex pheromones in moths is mediated by the pheromone receptors that are expressed in the sensory neurons in the olfactory sensilla of conspecific male antennae. Since the pioneering studies on the tobacco budworm Heliothis virescens and the silkworm Bombyx mori a decade ago, genes encoding pheromone receptors have been identified from a number o...

متن کامل

Odors Pulsed at Wing Beat Frequencies are Tracked by Primary Olfactory Networks and Enhance Odor Detection

Each down stroke of an insect's wings accelerates axial airflow over the antennae. Modeling studies suggest that this can greatly enhance penetration of air and air-born odorants through the antennal sensilla thereby periodically increasing odorant-receptor interactions. Do these periodic changes result in entrainment of neural responses in the antenna and antennal lobe (AL)? Does this entrainm...

متن کامل

Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae.

Trains of 20-ms-duration pulses of pheromone were delivered at rates of 1-33 Hz to antennal preparations of males of Bombyx mori and Lymantria dispar, two moth species with bipectinate antennae. Resolution of rapidly pulsed plumes of pheromone was not compromised by a complex antennal morphology or by moderate changes in wind speed (25-50 cm/s). Fourier analysis of the electroantennograms resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 19  شماره 

صفحات  -

تاریخ انتشار 2000